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Abstract. We investigate the electron transmission through a structure of serial mesoscopic metallic rings
coupled to two external leads. A set of analytical expressions based on the quantum waveguide transport
and the transfer matrix method are derived and used to discuss the effects of geometric configurations on
transmission probabilities. It is found that in the contact ring case the existence of an applied magnetic
flux is necessary to create transmission gaps, while in the non-contact ring case transmission gaps always
appear irrespective of whether there is an applied magnetic flux or not. The transmissions for periodic
rings with a defect ring and periodic rings built by two sorts of rings are also briefly studied. It is also
found that the transmission periodicity with wave vector must be ensured by the commensurability of two
characteristic lengths, i.e., of the half perimeter of a ring and the connecting wire between two adjacent
rings. The special points of wave vector and magnetic flux which give rise to the transmission resonance
and antiresonance are analyzed in detail.

PACS. 73.23.Ad Ballistic transport – 73.63.Nm Quantum wires – 73.21.Hb Quantum wires – 85.35.Be
Quantum well devices

1 Introduction

In the past two decades, considerable attention has been
paid to the propagation of electron waves along quantum
wires with various geometric structures [1–27]. Among
these quantum confined structures, the mesoscopic metal-
lic rings are the most attractive. It has been made clear
that the geometry of rings is significant for electron trans-
port, especially that the magnetic flux threading rings
can change the phases of wave functions, leading to con-
structive or destructive interferences and bringing about
the periodic oscillations in transmission amplitudes. There
are two important effects in these Aharonov-Bohm (AB)
rings. One is the band formation [1,3,7,8], and the other
is the persistent current [1,4,6,15]. Both are due to the
existence of magnetic flux through the rings. Besides, the
notion of AB cages becomes prominent in recent years
and it states that an extreme localization mechanism can
be induced by magnetic fields in some quantum networks
made of one-dimensional wires [13,17,20]. Recent experi-
mental progress in creating quantum coherent devices in
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metallic as well as in semiconductor nanostructures indi-
cates the principal ability to perform magnetotransport
based on serial connecting rings [18,19]. So far the quan-
tum transport in mesoscopic rings has been an exciting
research field, but the behavior in serially connected ring
systems has not been sufficiently explored analytically.

In the present work we perform an analytic study of the
transport in the ideal mesoscopic metallic rings connected
one after another by perfect metallic wires, which can
be realized experimentally by modern micro-fabrication
technologies. Similar structures have been studied by
using the free-electron model [8] and the tight-binding
model [11,24], respectively. To deal with the problems ef-
ficiently and analytically, we use the method of quantum
waveguide transport on networks as well as the power-
ful transfer-matrix approach which has been proved to be
reliable [5,10,22,23]. For simplicity, we assume that an
electron moves ballistically through the serial rings and
wires, and scatterings can only take place at the junctions
between two rings or a ring and a wire. Simple as it is,
this model can capture the essential features of the quan-
tum coherence occurring in quasi-one-dimensional metal-
lic periodic rings, which could be realized in single-channel
clean metallic rings. It may be noted that if disorder is in-
troduced, such as there exist impurities in the quantum



48 The European Physical Journal B

Fig. 1. A segment of a serial mesoscopic metallic ring struc-
ture.

wires, the electron motion will be diffusive at low temper-
atures. This case of diffusive transport will be involved in
the elastic scatterings in multi-channels and is out of the
scope of the present paper.

The paper is organized as follows: Section 2 is de-
voted to the model and formulation for investigating the
electron transmission through a serial metallic ring struc-
ture. In Section 3 the numerical results and discussions are
presented for the dependence of electron transmission on
the magnetic flux and electronic wave vector in the cases
for various geometrical parameters. Finally, a summary is
given in Secton 4.

2 Model and formulation

We consider a one-dimensional serial ring structure com-
posed ofN rings andN+1 wires. Wires 1 andN+1 are the
leads connected to the two ends of an external reservoir,
while wire n connects the (n− 1)th ring and the nth ring.
One segment of this structure is shown in Figure 1 with
the coordinate x along the waveguide. The wave functions
describing the incoming wave and the transmitted wave
on the two sides of the serial ring structure are taken to
be plane-wave like, i.e., ψ1 = eikx + re−ikx with r de-
noting the reflection amplitude, and ψN+1 = teikx with t
denoting the transmission amplitude. Similarly, the wave
functions in the nth wire, the upper arm and lower arm
of the nth ring can be written as ψn = Ane

ikx +Bne
−ikx,

ψ
(u)
n = Cne

ikx +Dne
−ikx and ψ

(l)
n = Ene

ikx + Fne
−ikx if

there is no magnetic field.
When a magnetic field exists, the one-dimensional

Sch-rödinger equation for a single ring is[
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]
ψ(x) = Eψ(x), (1)

where φ is the magnetic flux through the ring. For the
present case, no tunnel potential barrier is assumed to
exist in the system, namely, V (x) = 0. Therefore, the
wave function ψ(x) is still a superposition of plane waves
with the wave vector k. We can choose a gauge for the
vector potential A in which the effect of the magnetic field
appears as a change in the phase of wave functions. Thus
the wave functions for an electrons in the upper and lower

arms of a ring moving in the clockwise and anti-clockwise
directions are

ψ(u) = (Ceikx +De−ikx)e
ieφ
�cl x, (2)

and
ψ(l) = (Eeikx + Fe−ikx)e−

ieφ
�cl x. (3)

It should be stressed that a local coordinate is chosen for
each ring with its origin being located at the left inter-
section. In this prescription, all accumulated phases from
previous rings and wires are included in the coefficients in
equations (2) and (3). When an electron travels along the
upper (lower) arm of the ring, it acquires a phase factor
eiπf (e−iπf ) with f being the reduced magnetic flux

f =
eφ

hc
=

e

hc

∮
l

A · dl, (4)

where hc/e = φ0 is the magnetic flux quantum, l is along
the ring and l is the half perimeter (each ring is assumed to
be symmetrically divided by two wires). To establish the
relations of the coefficients in the plane-wave representa-
tion, we would invoke the Griffith’s boundary conditions
which ensure the continuity of wave functions and the con-
servation of current density at the intersections [5,14]. It
is worthy of pointing out that this kind of boundary con-
ditions is consistent with the scattering matrix method
with the coupling ε = 4/9 in reference [4] as well as with
the parameters m = 3, w = 1 and λ = 0 in reference [21]
in which the author gave a generalization of the scatter-
ing theory onto arbitrary graphs made of one-dimensional
wires connected to external leads.

By applying the boundary conditions at the two inter-
sections of the nth ring, the electronic wave amplitudes in
the (n + 1)th wire can be obtained from the amplitudes
in the nth wire,(

An+1

Bn+1

)
= Tn+1,n

(
An

Bn

)
, (5)

where Tn+1,n is a 2×2 transfer matrix. Since the length of
the connecting wire sn and the half perimeter of the ring
ln are combined with the wave vector k, we take ln, sn and
k to be all dimensionless quantities. By a transformation(

An

Bn

)
=

(
1 i
1 −i

) (
αn

βn

)
, (6)

Tn+1,n is transformed into Mn+1,n for a new set of ampli-
tudes (αn, βn), which satisfies(

αn+1

βn+1

)
= Mn+1,n

(
αn

βn

)
, (7)

where

Mn+1,n =

⎛
⎜⎜⎝

cos(kln)
cos(πfn)

− sin(kln)
2 cos(πfn)

2 cos2(πfn) − 2 cos2(kln)
sin(kln) cos(πfn)

cos(kln)
cos(πfn)

⎞
⎟⎟⎠

×
(

cos(ksn) − sin(ksn)
sin(ksn) cos(ksn)

)
. (8)
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Then the complex transfer matrix, Tn+1,n, is transformed
into the real one, Mn+1,n, which gives great convenience
for the following analytic calculation. With these transfer
matrices, we have(

αN+1

βN+1

)
= M(N)

(
α1

β1

)
, (9)

where

M(N) =
N∏

n=1

Mn+1,n (10)

is the global transfer matrix of the whole system. After
the matrix M(N) was obtained, the electronic transport
through the system can be determined by the transmission
coefficient

T =
4

2 + |M(N)|2 , (11)

where |M(N)|2 is defined here as the sum of the
squares of its four matrix elements. It is obvious that
equations (8)–(11) are quite general formulas for any serial
metallic ring structure. Choose the parameters ln, sn, and
fn properly, we can investigate, for example, the Fibonacci
sequence of metallic rings as well [24]. After the structural
parameters are given, in principle, the electronic density
distribution and transmission property can be determined
as a function of the magnetic flux and electronic wave vec-
tor, the latter is equivalent to the electronic energy in the
free-electron model. For concreteness, in the following, we
would discuss the periodic ring structure, partly due to its
convenience to be realized in experiments [18,19].

In the case of periodic rings, all rings are identical,
so are the transfer matrices. It is easy to write a single
matrixM by replacing ln, fn and sn in equation (8) with l,
f and s. The total transfer matrix M(N) is obtained by

M(N) = MN = uN−1(χ)M − uN−2(χ)I, (12)

where I is the unit matrix and uN(χ) is the Chebyshev
polynomial of the second order with the trace defined by
χ = 1

2TrM . Combining equations (11) and (12), we get

T =
1

1 + C(kl, f)u2
N−1(χ)

, (13)

where

C(kl, f) =
[4 sin2(πf) − 3 sin2(kl)]2

16 sin2(kl) cos2(πf)
, (14)

and

χ =
cos(kl)
cos(πf)

cos(ks) +
4 sin2(πf) − 5 sin2(kl)

4 cos(πf) sin(kl)
sin(ks).

(15)
Equations (13)–(15) are the core equations in the follow-
ing discussions. By changing the parameters, such as the
lengths of connecting wires, the perimeter of rings, and
the magnetic flux threading rings, a serial ring structure
exhibits many fascinating phenomena.

Specifically, in the case of contact rings, that is s = 0,
equation (15) is simply replaced by

χ =
cos(kl)
cos(πf)

. (16)

Combining it with equations (13) and (14), the transmis-
sion coefficient for contact rings can be calculated. As a
byproduct, the precise expressions for the transmission co-
efficient of single-ring and double-ring structures without
connecting wires can thus be derived easily. Both expres-
sions from our approach are in perfect agreement with the
former study [22].

However, in more general cases, such as for N taking
any integer or even for s not zero, using our analytical re-
sults, the transmission properties can be extensively stud-
ied. For example, we can easily find the resonant trans-
mission (T = 1) and antiresonant transmission (T = 0)
conditions. When f = m + 1/2, for m being an integer,
the phase shift between the electronic wave functions in
the upper arms and lower arms is (2m + 1)π at the in-
tersections. This gives the zero transmission. We can also
find that when f �= m and kl is an integral multiple of π,
the transmission coefficient is also zero. It is interesting to
find all points for the resonant transmission. From equa-
tion (13), it is clear that the resonant transmission is a
combined effect of wave vector k and piercing flux f if the
length l is given. Therefore, the following two conditions,

C(kl, f) = 0, (17)

or
uN−1(χ) = 0, (18)

can lead to the resonant transmission, respectively. Equa-
tion (17) gives a universal condition of the resonant trans-
mission for all periodic ring structures. It reads

sin2(πf)
sin2(kl)

=
3
4
, (19)

which is independent of the number of identical rings N .
Equation (18) renders

χ = cos(mπ/N),m = 1, · · · , N − 1, (20)

which, by combining with equation (15), gives different
resonant transmissions in the (k, f) plane for different N .

3 Numerical results and discussions

We start our discussion with the special case where the
rings contact with each other. In Figure 2, the transmis-
sion coefficient T , for a chain with 100 contact rings, is
shown as a function of the reduced magnetic flux f for
several values of wave vector k. If the ring radius is made
to be r = 0.1 µm, according to f = φ/φ0 = πer2B/hc,
the magnetic field is experimentally feasible. Since l is al-
ways combined with k, we can fix l = 1 here and also in
all later discussions. Because T is an even and periodic
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Fig. 2. Transmission coefficient T versus reduced magnetic
flux f of a chain with 100 contact rings. Solid,dotted and
dashed lines represent kl = 0.45π, π and 0.05π, respectively.
The inset shows the transmission coefficient in a wider f range
with kl = 0.2π.

function of f with the period 1, we show it only within
one period of f , from −0.5 to 0.5. The transmission coef-
ficient never drops to zero when cos(kl)/ cos(πf) ≤ 1 and
always equals zero when cos(kl)/ cos(πf) > 1 if the num-
ber of rings is large enough. The inset in Figure 2 gives an
exhibition of the transmission coefficient versus the mag-
netic flux f in a little wider range. It clearly shows that
the electron transmission coefficient, corresponding to the
electron conductance, can be tuned by the external mag-
netic flux. This property gives a possibility to apply to
electronic devices, for example, a magnetic switch with
the turnover point at cos(kl) = cos(πf).

For contact rings, another interesting phenomenon is
the flux-independent total transmission. It appears only
in the even-numbered ring geometry. When kl = π/2 but
the magnetic flux f changes, the transmission coefficient
T always equals 1 except at the half integer f points. By
the way, the half integer f is an absolute condition for T =
0 which overrides the condition of flux-independent total
transmission [22]. This can be verified from the expressions
involved in the transmission coefficient. When kl = π/2
and f is not a half integer,

χ = 0, (21)

then

uN−1(χ) =
{

1 or − 1, N is odd,
0, N is even. (22)

So in this situation the resonant transmission (T = 1) is
always satisfied for even-numbered rings.

The transmission coefficient T versus wave vector k for
the contact rings is shown in Figure 3. In the simplest case,
f = 0, the transmission coefficient satisfies

T =
32

41 − 9 cos(2Nkl)
. (23)

Resonant transmission can be obtained by requiring that
cos(2Nkl) = 1 and the solutions are simply given by

Fig. 3. Transmission coefficient T versus wave vector k for a
three ring system. Dotted line, f = 0; solid line, f = 1/5; dash
dotted line, f = 2/5.

k = mπ/(Nl) with m being any integer. There is no trans-
mission zero at all in this case. The magnitude of the trans-
mission minimum is a constant T = 0.64. However, when
a perpendicular magnetic flux is applied to the contact
rings, transmission zero appears. In accordance with this
result is that the spin-orbit interaction, which can be con-
trolled by a gate voltage in the Rashba mechanism, will
provide an effective magnetic field to create conduction
gaps in the serial contact rings [26,27].

It deserves to point out that for N contact rings, N+1
resonant peaks will appear, instead of only N − 1 reso-
nant peaks as the conventional cognition from the electron
transmission through semiconductor superlattices [7]. The
positions of these N + 1 resonant peaks are strictly given
by equations (17)–(20). Taking three rings for example, if
the magnetic flux f is 1/5, there exist four resonant peaks
of T (k = 0.237π, 0.763π, 0.367π, 0.633π) in one period π,
as is shown by the solid line in Figure 3. The first two
are caused by equation (19) and the latter two by equa-
tion (20). The dash dotted line in this figure represents
the transmission coefficient versus wave vector k when
f = 2/5, and only two peaks can be observed in one pe-
riod. This is because | sin(2π/5)| > √

3/2 which excludes
the possibility of any k value for resonant transmission
due to equation (19). It is noticed that as the number of
rings increases, the transmission valleys became sharper
and sharper, and change into gaps. For the contact ring
case,

|χ| =
∣∣∣∣ cos(kl)
cos(πf)

∣∣∣∣ > 1 (24)

is responsible for the gaps, which is very easy to verify
by using equation (13) for the transmission coefficient. As
χ > 1, limN→∞ u2

N−1 → ∞, then T → 0.
To show the wave vector and magnetic flux depen-

dence of transmission coefficient simultaneously, we can
plot a T − k − f three-dimensional diagram for contact
rings. However, a three-dimensional diagram cannot show
the transmission properties clearly because the majority of
transmission peaks are difficult to distinguish. For a better
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Fig. 4. Transmission spectrum and energy spectra shown in
the wave vector k versus magnetic flux f plane. (a) Transmis-
sion spectrum of a five contact ring system. The dots repre-
sent the total transmission coefficient of an incident electron
T ≥ 0.95; (b) energy spectra for five (solid line) and six (dashed
line) contact ring structures.

exhibition of transmission properties, we would like to plot
here the points in the k − f plane with a transmission
coefficient no less than 0.95 in the three-dimensional di-
agram, as is shown in Figure 4a. This result is roughly
consistent with Figure 6 in reference [11], in which the
resonant transport properties were studied in the tight-
binding model. The energy spectrum, also in the contact
ring regime, can be given by using the fixed boundary con-
ditions for the wave functions at both ends of the whole
system. From these boundary conditions, we have

sin(kl)
cos(πf)

uN−1(χ) = 0, (25)

which implies the dispersion relation k − f . Comparing it
with equations (17)–(20) which render transmission peaks,
we can find that they are very similar. uN−1(χ) = 0
gives corresponding solutions not only for the transmis-
sion peaks but also for the eigenenergies. When the energy
of an incident electron equals one of these N − 1 eigenen-
ergies, the electron will transmit through this system bal-
listically. We plot the energy spectrum in Figure 4b. It is
consistent with the transmission spectrum in Figure 4a.
It is not difficult to elucidate that the small differences
between these two figures come from different boundary
conditions.

Fig. 5. Transmission coefficient T versus wave vector k for
a nine ring system with a defect ring and an eight ring sys-
tem built by two sorts of rings. The parameters are f1 = 2/5,
f2 = 1/5. Solid line is for the former case and dotted line is for
the latter case.

In Figure 4, as well as in Figure 2, we can find that the
reduced magnetic flux f = 1/2 always corresponds to the
zero transmission. This reminds us the theoretical predic-
tion and experimental confirmation of the AB cages which
describe the set of sites eventually visited by a wave packet
that can be confined for particular values of the magnetic
flux [13,17,20]. It is attributed to the AB destructive in-
terference on a special topological structure when the flux
per elementary plaquette equals half a quantum magnetic
flux. It is no doubt that there are some similarities be-
tween the serial metallic rings and the bipartite tilling of
rhombus for the localization due to magnetic phase inter-
ferences, although the former is much simpler than the
latter.

Another interesting case we would like to show below
is that of a defect ring inserted in the middle of contact
rings. We can get the total transfer matrix by multiplying
the transfer matrices for single rings one after another, so
finally the transmission coefficient is obtained. Although
defects can have other configurations, here the defect ring
is assumed to have the same size of the normal rings while
the piercing flux is different. The transmission coefficient
T versus wave vector k for a nine ring system is shown
by the solid line in Figure 5, where the fluxes in the nor-
mal rings and the defect ring are taken to be f1 = 2/5
and f2 = 1/5, respectively. We can observe two isolated
modes k = 0.34659π and k = 0.65340π in addition to the
transmission band. These two isolated modes are symmet-
ric about k = π/2. We know that in the absence of any
defect ring, i.e., f2 = f1, the high transmission regions
forming bands correspond to |χ| ≤ 1 with χ defined as
cos(kl)/ cos(πf). But when f2 �= f1, there may exist nar-
row transmission bands satisfying |χ| > 1. This is true not
only when there are only a few rings but also when the
number of rings increases. As the number of rings becomes
infinite, the isolated transmission points can be obtained
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analytically from

T 2
j1 + T 2

j2 + 2Tj1Tj2
cos(kl)

cos(πf1)
= 0, (26)

where

Tj1 =
2 cos(kl)[4 cos2(kl) − 2 cos2(πf1) − cos2(πf2)]

cos2(πf1) cos(πf2)
,

Tj2 =
4 cos2(kl) − cos2(πf1) − cos2(πf2)

cos(πf1) cos(πf2)
. (27)

As f1 = 2/5 and f2 = 1/5, there are two solutions very
close to the case for nine rings. They are k = 0.34658π
and k = 0.65341π. Numerical calculation also confirms
that the isolated bands become narrower and narrower as
the ring number increases.

The transmission coefficient for a periodic ring struc-
ture built by two sorts of rings can also be analyzed. In this
case the primary transfer matrix is a multiplication of the
two original transfer matrices. And we can give the trans-
mission formulas in the same manner with a Chebyshev
polynomial as for identical rings. Here if the rings are of
the same size while the fluxes are different, the trace is
given as

χ =
4 cos2(kl) − cos2(πf1) − cos2(πf2)

cos(πf1) cos(πf2)
. (28)

As was shown for the identical ring case, χ here is re-
sponsible for the transmission band. This renders that for
0 < f2 < f1 < π/2, the transmission band satisfies

cos(πf2) − cos(πf1)
2

≤ | cos(kl)| ≤ cos(πf2) + cos(πf1)
2

.

(29)
In general, a transmission band for identical rings is sepa-
rated into two subbands as is shown by the dotted line in
Figure 5.

We now turn to the more general case when the rings
are connected via metallic wires. The transmission coeffi-
cient becomes dependent on the length of wires. The effect
of s can be seen from equation (15), the expression of the
half matrix trace χ. In this case, f = m+1/2 also renders
the transmission zeros, because of the AB interference.
The conditions responsible for the resonant transmission
still arises from C(kl, f) = 0 or uN−1(χ) = 0. We plot in
Figure 6 the transmission coefficient versus piercing mag-
netic flux f for a nine ring system. Figure 6 also shows
the role of the connecting wire length s in the transmis-
sion spectrum. It is shown, by the dashed line, there are
two isolated peaks in one period. C(kl, f) = 0 is responsi-
ble for this phenomenon. As the number of rings increases,
the resonant peaks becomes sharper but the isolated peaks
always exist.

We have shown that in the contact ring case, when
there is no piercing flux, the transmission coefficient never
approaches zero. But for serial rings with connecting wires,
there exist transmission zeros in the zero-flux case. This
is due to the effect of ks in equation (15), which gives a

Fig. 6. Transmission coefficient T versus reduced magnetic
flux f of a nine ring system for kl = 0.3π. Solid line, s = 1.7;
dashed line, s = 2.6.

change in χ. And when χ is larger than 1, the transmission
zero appears. We plot here the transmission coefficient ver-
sus wave vector for a five ring system in Figures 7a and 7b.
The transmission bands are clearly separated by the band
gaps. The transmission coefficient T for the non-contact
rings with a magnetic flux is shown in Figures 7c and 7d,
in comparison with the zero flux case. We can observe
that k = mπ, for m being an integer, gives the resonant
transmission in the zero flux case, but the antiresonant
transmission in the finite flux case.

Since the rings are connected via wires in the non-
contact case, it is clear that the periodicity and symmetry
of the transmission spectra are closely related to the rel-
ative ratio of s and l. There are two distinct cases: the
commensurate case when the ratio is a rational number
and the incommensurate case when the ratio is an irra-
tional number. Since l is fixed at 1 throughout this paper,
the length s can be taken to represent the relative ra-
tio. For the commensurate case, the periodicity and the
symmetry of the transmission spectra always exist, which
can be seen from Figures 7a and 7c when s = 0.5. The
period and the resonant transmission points can also be
determined from the expression for the transmission coef-
ficient. For the incommensurate case, we cannot find any
periodicity and symmetry for the transmission spectra, or
to say, the period is infinite, as is shown in Figures 7b
and 7d for which we take s = (

√
5 − 1)/2, the reciprocal

of the well-known golden mean.

4 Summary

We have theoretically studied the electron transmission
through structures of periodically arranged mesoscopic
metallic rings. The rings can be coupled by either direct
contact or connecting wires, and they can be threaded
with or without magnetic flux. In the ballistic regime and
considering scattering at the junctions, a set of analytic
expressions have therefore been derived and have effec-
tively been used to discuss various situations. By our for-
mulation, it is easy to determine the resonant and an-
tiresonant transmissions for any multi-ring structure, for
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Fig. 7. Transmission coefficient T versus wave vector k of a five ring system. (a) f = 0, s = 0.5; (b) f = 0, s = (
√

5− 1)/2; (c)
f = 0.3, s = 0.5; (d) f = 0.3, s = (

√
5 − 1)/2.

example, there are the absolute transmission zeros at the
half-integer quantum magnetic flux threading rings. It has
been found that for the contact ring structure a magnetic
flux is necessary to cause transmission gaps. It has been
demonstrated that the number of resonant transmission
peaks for a N -ring structure in a period of wave vector is
generallyN+1, instead of N−1 in the case of semiconduc-
tor superlattices. The flux-independent total transmission
has also been analytically investigated. Furthermore, the
role of connecting wire length in transmission spectra was
studied. Our results have shown that the nonzero length of
connecting wires can provide another approach to produce
transmission gaps even without introducing any magnetic
flux. We have pointed out the importance of commensu-
rability between the lengths of the half perimeter of a ring
and connecting wire of neighboring two rings. The wave
vector dependence of transmission spectra can be periodic
in the commensurate case or aperiodic in the incommen-
surate case, even though the serial ring structure is kept
periodic. The transmission for periodic rings with a defect
ring and periodic rings built by two sorts of rings are also
briefly addressed and isolated modes and band separation
are found.

Due to the great advance now in the growth and fab-
rication of nanostructures, it is not difficult to create a
line of connected rings up to several tens or even hun-
dreds [18,19]. It should be noted that these experiments
were performed in the diffusive cases, since the considered
rings gave the conducting channels of the order of several
tens or even more than thousands. It is expected that the
one-channel ballistic transport in serial mesoscopic rings
can be realized in experiments one day after the further
progress in micro-manufacture. Ultralow temperature can
be used to insure the phase coherence [16]. The interesting

results in this work suggest to experimentally verify the
controllable output of electrons by varying the magnetic
flux threading the rings. By the way, it is also meaning-
ful for the transmission with selectivity of electronic wave
vectors. It should be emphasized that although our re-
sults are presented in perfect one-dimensional rings, they
can still be valid for real rings with finite width, provided
that the width of rings is comparable to the characteristic
Fermi wave length of a system. Based on the fascinating
features stated above, it could be expected that this kind
of serial ring structures may have potential applications
in the next generation of electronic devices.

This work was supported by the Natural Science Founda-
tion 10674058 and 60371013, and the State Key Program
2006CB921803 of China.
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A. Benôıt, B. Etienne, Phys. Rev. Lett. 86, 3124 (2001)

20. C. Naud, G. Faini, D. Mailly, Phys. Rev. Lett. 86, 5104
(2001)

21. C. Texier, G. Montambaux, J. Phys. A: Math. Gen. 34,
10307 (2001)

22. J. Yi, J.H. Wei, J. Hong, S.I. Lee, Phys. Rev. B 65, 033305
(2001)

23. M. Moskalets, M. Büttiker, Phys. Rev. B 68, 161311 (2003)
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